<assign> -> <id> = <expr>
{id> -> A | B | C
<expr> -> <expr> + <term> | <term>
<term> -> <term> * <factor> | <factor>
<factor> -> (<expr>) | <id>

1. Rewrite the BNF grammar above to give + precedence over * and force + to be right associative.

2. Using the grammar provided above, show a parse tree and a leftmost derivation for each of the following statements:

 a. A = (A + B) * C
 b. A = B * (C * (A + B))

3. Prove that the following grammar is ambiguous:

 <S> -> <A>
 <A> -> <A> + <A> + <A> | <id>
 <id> -> a | b | c

4. Consider the following grammar:

 <S> -> <A> a b
 <A> -> <A> b | b
 -> a | a

 Which of the following sentences are in the language generated by this grammar?

 a. baab
 b. bbbab
 c. bbaaaaa
 d. bbaab

5. Write a grammar for the language consisting of strings that have \(n \) copies of the letter a followed by the same number of copies of the letter b, where \(n > 0 \).
6. Write an attribute grammar whose BNF basis is the grammar below but whose language rules are as follows: Data types cannot be mixed in expressions, but assignment statements need not have the same types on both sides of the assignment operator.

 <assign> --> <var> = <expr>
 <var> --> A | B | C

7. Compute the weakest precondition for each of the following:
 a. \(a = 2 \times (b - 1) - 1 \) \(\{ a > 0 \} \)
 b. \(a = 2 \times b + 1; \)
 \(b = a - 3; \)
 \(\{ b < 0 \} \)