Stacks and Queues

a. Write Java code for `public E remove()` for a generic queue implemented with a “circular” array as described in the text and lecture. Don’t forget about the `nextIndex` method (you can assume that you have this available to you).

```java
public E remove() {
    E answer;
    if (manyItems == 0)
        throw new NoSuchElementException("Queue underflow");
    answer = data[front];
    front = nextIndex(front);
    manyItems--;
    return answer;
}
```

b. Use a stack to evaluate the following postfix expression. Show your work so that I can see you are using a stack. You will not receive full credit without appropriate stack pictures. You may not use calculators.

```
7 3 + 4 5 * 4 2 + - 3 * 6 / +
```

```
    2
   5
  4 4 6
3
10
10
10
10
10
10
10
10
10
10
10
17
```
a. What do you need to do to copyright material you put on your web pages?
Nothing – if you have created it and publish it on your website, you own the copyright

b. Give two requirements for obtaining a patent on a software application.
Non-obviousness
utility
originality

Recursion
For this question, you will write two versions of a function: one iterative and one recursive. The functions will take in two integer parameters named little and big. The function prototype for both functions is:
void pattern(int little, int big)
When little is 1 and big is 5, the pattern is 5 4 3 2 1 2 3 4 5 with a space between each value and no newline.
When little is 17 and big is 20, the pattern is 20 19 18 17 18 19 20

 a. Write an iterative version of the function using a loop(s). Think simple and straightforward. This is not a trick.

 public static void pattern(int little, int big) {
 for (int i = big; i >= little; i--)
 System.out.print(i + " ");
 for (int j = little + 1; j <= big; j++)
 System.out.print(j + " ");
 }

 b. Write a recursive version of the same function. It should use NO (absolutely no) loops. What is the base case?

 public static void pattern(int little, int big) {
 if (little > big)
 return;
 else if (little == big) {
 System.out.print(little + " ");
 return;
 }
 else {
 System.out.print(big + " ");
 pattern(little, big-1);
 System.out.print(big + " ");
 }
 }

(1) What is the output of the following code if it is called with mystery(4)?

public static void mystery(int n) {
 if (n > 0) {
 System.out.print(n + " ");
 mystery(n-3);
 mystery(n-2);
 System.out.print(n + " ");
 }
}

4 1 1 2 2 4
For the binary tree below neatly write your answers to the following:

```
  42
   / \ 
  17   58 
   / \   
 12   29   72 
   / \ 
 68   99 
```

a. Is it a binary search tree? Why or why not?
 Yes, at each node all values to left are <= node value, all values to right are >

b. Show the result of an inorder traversal of this tree as shown.
 12 17 29 42 58 68 72 99

c. Show the result of an preorder traversal of this tree as shown.
 42 17 12 29 58 72 68 99

d. Show the result of a postorder traversal of this tree as shown.
 12 29 17 68 99 72 58 42

e. Write the recursive code for doing a preorder traversal of a binary tree that stores characters. You can assume that you are given the root node as node, as shown below:

   ```java
   public void printPreorder(CharBTNode node) {
       if (node == null)
           return;
       else {
           System.out.print(node.getData() + " ");
           printPreOrder(node.getLeft());
           printPreOrder(node.getRight());
       }
   }
   ```

f. The text suggests that a binary search tree would be a more efficient way to represent a Bag than the various ways we studied in class especially when searching. Why?
 Because the organization of a binary search tree allows you to focus the search, ruling out portions of the data with each step rather than examining each element until you find the target.