Another look at Bayesian inference

• A general scenario:
 - Query variables: X
 - Evidence (observed) variables and their values: $E = e$
 - Unobserved variables: Y

• Inference problem: answer questions about the query variables given the evidence variables
 - This can be done using the posterior distribution $P(X | E = e)$
 - In turn, the posterior needs to be derived from the full joint $P(X, E, Y)$

$$P(X | E = e) = \frac{P(X, e)}{P(e)} \propto \sum_y P(X, e, y)$$

• Bayesian networks are a tool for representing joint probability distributions efficiently
Bayesian networks

- More commonly called *graphical models*
- A way to depict conditional independence relationships between random variables
- A compact specification of full joint distributions
Bayesian networks: Structure

- **Nodes**: random variables

- **Arcs**: interactions
 - An arrow from one variable to another indicates direct influence
 - Must form a directed, *acyclic* graph
Example: N independent coin flips

- Complete independence: no interactions

\[X_1, X_2, \ldots, X_n \]
Example: Naïve Bayes document model

- Random variables:
 - X: document class
 - W_1, \ldots, W_n: words in the document
Example: Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm.

- Example inference tasks
 - Suppose Mary calls and John doesn’t call. What is the probability of a burglary?
 - Suppose there is a burglary and no earthquake. What is the probability of John calling?
 - Suppose the alarm went off. What is the probability of burglary?
 - ...
Example: Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm.

• What are the random variables?
 – Burglary, Earthquake, Alarm, John, Mary

• What are the direct influence relationships?
 – A burglar can set the alarm off
 – An earthquake can set the alarm off
 – The alarm can cause Mary to call
 – The alarm can cause John to call
Example: Burglar Alarm

- Burglary
- Earthquake
- JohnCalls
- MaryCalls
Conditional independence relationships

- Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

\[P(\text{John} \mid \text{Alarm, Burglary}) = P(\text{John} \mid \text{Alarm}) \]
Conditional independence relationships

- Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?
 \[P(\text{John} | \text{Alarm, Burglary}) = P(\text{John} | \text{Alarm}) \]

- Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?
 \[P(\text{Mary} | \text{Alarm, John}) = P(\text{Mary} | \text{Alarm}) \]
Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?
 \[P(\text{John} | \text{Alarm, Burglary}) = P(\text{John} | \text{Alarm}) \]

• Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?
 \[P(\text{Mary} | \text{Alarm, John}) = P(\text{Mary} | \text{Alarm}) \]

• Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?
 \[P(\text{Burglary} | \text{Alarm, Earthquake}) \neq P(\text{Burglary} | \text{Alarm}) \]
Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?
 \[P(\text{John} \mid \text{Alarm, Burglary}) = P(\text{John} \mid \text{Alarm}) \]

• Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?
 \[P(\text{Mary} \mid \text{Alarm, John}) = P(\text{Mary} \mid \text{Alarm}) \]

• Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?
 \[P(\text{Burglary} \mid \text{Alarm, Earthquake}) \neq P(\text{Burglary} \mid \text{Alarm}) \]

• Suppose there was a burglary. Does knowing whether John called change the probability that the alarm went off?
 \[P(\text{Alarm} \mid \text{Burglary, John}) \neq P(\text{Alarm} \mid \text{Burglary}) \]
Conditional independence relationships

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
Conditional independence relationships

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents
Conditional independence relationships

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents
- Burglary and Earthquake are not conditionally independent of each other given Alarm
 - Parents are not conditionally independent given children
Conditional independence relationships

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - *Children* are conditionally independent of *ancestors* given *parents*
- John and Mary are conditionally independent of each other given Alarm
 - *Siblings* are conditionally independent of each other given *parents*
- Burglary and Earthquake are *not* conditionally independent of each other given Alarm
 - *Parents* are *not* conditionally independent given *children*
- Alarm is *not* conditionally independent of John and Mary given Burglary and Earthquake
 - Nodes are *not* conditionally independent of *children* given *parents*

- **General rule:** each node is conditionally independent of its *non-descendants* given its *parents*
Conditional independence and the joint distribution

- **General rule:** each node is conditionally independent of its *non-descendants* given its *parents*
- Suppose the nodes X_1, \ldots, X_n are sorted in topological order (parents before children)
- To get the joint distribution $P(X_1, \ldots, X_n)$, use chain rule:

$$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | X_1, \ldots, X_{i-1})$$

$$= \prod_{i=1}^{n} P(X_i | \text{Parents}(X_i))$$
Conditional probability distributions

- To specify the full joint distribution, we need to specify a *conditional* distribution for each node given its parents: $P(X \mid \text{Parents}(X))$
Example: Burglar Alarm

The conditional probability tables are the model parameters
The joint probability distribution

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid \text{Parents}(X_i))
\]

- For example, \(P(j, m, a, \neg b, \neg e) \)
 \[= P(\neg b) P(\neg e) P(a \mid \neg b, \neg e) P(j \mid a) P(m \mid a) \]
Conditional independence

• General rule: X is conditionally independent of every non-descendant node given its parents
• Example: causal chain

![Diagram of a causal chain with nodes X, Y, and Z.]

- X: Low pressure
- Y: Rain
- Z: Traffic

• Are X and Z independent?
• Is Z independent of X given Y?
Conditional independence

• Common cause

Y
\[\rightarrow \]
X \quad \quad Z

Y: Project due
X: Newsgroup busy
Z: Lab full

• Are X and Z independent?
 – No

• Are they conditionally independent given Y?
 – Yes

• Common effect

X \quad \quad Y \quad \quad Z

X: Raining
Z: Ballgame
Y: Traffic

• Are X and Z independent?
 – Yes

• Are they conditionally independent given Y?
 – No
Compactness

• Suppose we have a Boolean variable X_i with k Boolean parents. How many rows does its conditional probability table have?
 – 2^k rows for all the combinations of parent values
 – Each row requires one number for $P(X_i = \text{true} \mid \text{parent values})$

• If each variable has no more than k parents, how many numbers does the complete network require?
 – $O(n \cdot 2^k)$ numbers – vs. $O(2^n)$ for the full joint distribution

• How many numbers for the burglary network?
 $1 + 1 + 4 + 2 + 2 = 10$ numbers (vs. $2^5-1 = 31$)
Constructing Bayesian networks

1. Choose an ordering of variables X_1, \ldots, X_n
2. For $i = 1$ to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that
 \[P(X_i | \text{Parents}(X_i)) = P(X_i | X_1, \ldots X_{i-1}) \]
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example

- Suppose we choose the ordering M, J, A, B, E
Example contd.

- Deciding conditional independence is hard in noncausal directions
 - The causal direction seems much more natural
- Network is less compact: $1 + 2 + 4 + 2 + 4 = 13$ numbers needed (vs. 10 for the causal ordering)
A more realistic Bayes Network: Car diagnosis

- **Initial observation**: car won’t start
- **Orange**: “broken, so fix it” nodes
- **Green**: testable evidence
- **Gray**: “hidden variables” to ensure sparse structure, reduce parameters
In research literature...

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data
Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan
(22 April 2005) Science 308 (5721), 523.
In research literature...

Describing Visual Scenes Using Transformed Objects and Parts
E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.
In research literature...

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables
Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko
Summary

• Bayesian networks provide a natural representation for (causally induced) conditional independence
• Topology + conditional probability tables
• Generally easy for domain experts to construct