World Champion chess player Garry Kasparov is defeated by IBM’s Deep Blue chess-playing computer in a six-game match in May, 1997

(link)
Why study games?

• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive or cooperative activities
 – Military confrontations, negotiation, auctions, etc.
Types of game environments

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect information (fully observable)</td>
<td>Chess, checkers, go</td>
<td>Backgammon, monopoly</td>
</tr>
<tr>
<td>Imperfect information (partially observable)</td>
<td>Battleships</td>
<td>Scrabble, poker, bridge</td>
</tr>
</tbody>
</table>
Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for each player (e.g., 1 for win, 0 for loss)
• The sum of both players’ utilities is a constant
Games vs. single-agent search

• We don’t know how the opponent will act
 – The solution is not a fixed sequence of actions from start state to goal state, but a \textit{strategy} or \textit{policy} (a mapping from state to best move in that state)

• Efficiency is critical to playing well
 – The time to make a move is limited
 – The branching factor, search depth, and number of terminal configurations are huge
 • In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 10^{154} nodes
 – Number of atoms in the observable universe $\approx 10^{80}$
 – This rules out searching all the way to the end of the game
A game of tic-tac-toe between two players, “max” and “min”
COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

YOUR MOVE IS GIVEN BY THE POSITION OF THE LARGEST RED SYMBOL ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON THE REGION OF THE GRID WHERE THEY WENT. REPEAT.

MAP FOR X:
A more abstract game tree

Terminal utilities (for MAX)

A two-PLY game
Game tree search

- **Minimax value of a node**: the utility (for MAX) of being in the corresponding state, assuming perfect play on both sides.
- **Minimax strategy**: Choose the move that gives the best worst-case payoff.
Computing the minimax value of a node

Minimax(node) =
- Utility(node) if node is terminal
- max\text{ action } Minimax(Succ(node, action)) if player = MAX
- min\text{ action } Minimax(Succ(node, action)) if player = MIN
Optimality of minimax

• The minimax strategy is optimal against an optimal opponent
• What if your opponent is suboptimal?
 – Your utility can only be higher than if you were playing an optimal opponent!
 – A different strategy may work better for a sub-optimal opponent, but it will necessarily be worse against an optimal opponent

Example from D. Klein and P. Abbeel
More general games

- More than two players, non-zero-sum
- Utilities are now tuples
- Each player maximizes their own utility at their node
- Utilities get propagated (backed up) from children to parents
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

![Game tree diagram](image)
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

• \(\alpha \) is the value of the best choice for the MAX player found so far at any choice point above node \(n \)
• We want to compute the MIN-value at \(n \)
• As we loop over \(n \)'s children, the MIN-value decreases
• If it drops below \(\alpha \), MAX will never choose \(n \), so we can ignore \(n \)'s remaining children
• Analogously, \(\beta \) is the value of the lowest-utility choice found so far for the MIN player
Alpha-beta pruning

Function $\text{action} = \text{Alpha-Beta-Search}(node)$

\[
v = \text{Min-Value}(node, -\infty, \infty)
\]

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function \[v = \text{Min-Value}(node, \alpha, \beta)\]

if Terminal(node) return Utility(node)

$v = +\infty$

for each action from node

\[v = \text{Min}(v, \text{Max-Value}(\text{Succ}(node, action), \alpha, \beta))\]

if $v \leq \alpha$ return v

$\beta = \text{Min}(\beta, v)$

end for

return v
Alpha-beta pruning

Function

\[
\text{action} = \text{Alpha-Beta-Search}(\text{node})
\]

\[
v = \text{Max-Value}(\text{node}, -\infty, \infty)
\]

return the action from node with value \(v\)

\(\alpha\): best alternative available to the Max player

\(\beta\): best alternative available to the Min player

Function

\[
v = \text{Max-Value}(\text{node}, \alpha, \beta)
\]

if Terminal(\text{node}) return Utility(\text{node})

\[
v = -\infty
\]

for each action from node

\[
v = \text{Max}(v, \text{Min-Value}(\text{Succ(node, action)}, \alpha, \beta))
\]

if \(v \geq \beta\) return \(v\)

\(\alpha = \text{Max}(\alpha, v)\)

end for

return \(v\)
Alpha-beta pruning

- Pruning does not affect final result
- Amount of pruning depends on move ordering
 - Should start with the “best” moves (highest-value for MAX or lowest-value for MIN)
 - For chess, can try captures first, then threats, then forward moves, then backward moves
 - Can also try to remember “killer moves” from other branches of the tree
- With perfect ordering, the time to find the best move is reduced to $O(b^{m/2})$ from $O(b^m)$
 - Depth of search is effectively doubled
Evaluation function

• Cut off search at a certain depth and compute the value of an evaluation function for a state instead of its minimax value
 – The evaluation function may be thought of as the probability of winning from a given state or the expected value of that state

• A common evaluation function is a weighted sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

 – For chess, \(w_k \) may be the material value of a piece (pawn = 1, knight = 3, rook = 5, queen = 9) and \(f_k(s) \) may be the advantage in terms of that piece

• Evaluation functions may be learned from game databases or by having the program play many games against itself
Cutting off search

• **Horizon effect:** you may incorrectly estimate the value of a state by overlooking an event that is just beyond the depth limit
 – For example, a damaging move by the opponent that can be delayed but not avoided

• Possible remedies
 – **Quiescence search:** do not cut off search at positions that are unstable – for example, are you about to lose an important piece?
 – **Singular extension:** a strong move that should be tried when the normal depth limit is reached
Advanced techniques

- **Transposition table** to store previously expanded states
- **Forward pruning** to avoid considering all possible moves
- **Lookup tables** for opening moves and endgames
Chess playing systems

- Baseline system: 200 million node evalutions per move (3 min), minimax with a decent evaluation function and quiescence search
 - 5-ply ≈ human novice
- Add alpha-beta pruning
 - 10-ply ≈ typical PC, experienced player
- Deep Blue: 30 billion evaluations per move, singular extensions, evaluation function with 8000 features, large databases of opening and endgame moves
 - 14-ply ≈ Garry Kasparov
- More recent state of the art (Hydra, ca. 2006): 36 billion evaluations per second, advanced pruning techniques
 - 18-ply ≈ better than any human alive?
Attribution

Slides developed by Svetlana Lazebnik based on content from Stuart Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach*, 3rd edition