1. Cross Validation and Sampling
 a. Training, testing, validation sets
 b. Cross validation, k-fold and leave-one-out
 c. Simple random sampling
 d. Weighted sampling
 e. Sampling with and without replacement
 f. Stratified sampling
 g. Determining sample size
2. Nearest Neighbors
 a. Similarity vs dissimilarity
 b. Euclidean vs Manhattan distance
 c. Distance matrix
 d. Weights and standardization
 e. K-nearest neighbors algorithm
 f. Lazy vs eager learning algorithms
 g. Output in R, review provided examples
3. Naïve Bayes
 a. Bayes Theorem
 b. Naïve Bayes vs Bayesian Belief Network
 c. Conditional independence assumption
 d. Advantages
 e. Output in R, review provided examples
4. Feature Subsets
 a. The curse of dimensionality
 b. Systematic approaches for choosing features (embedded, filter, wrapper)
 c. Adjusted R^2 statistic
5. Support Vector Machines
 a. Maximal margin classifier (definition, when is it applicable…)
 b. Support vector classifier (definition, when applicable, tuning parameter C…)
 c. Support vector machine (definition, when applicable
 d. Output in R, review provided examples
6. Ensemble Methods
 a. Rationale
 b. Construction methods, manipulating
 i. Training methods – bagging and boosting
 ii. Input features – random forest
 iii. Class labels (general concept only)
 iv. Learning algorithms (general concept only)
7. Association Mining
 a. Frequent itemsets, support
 b. Apriori Principle (anti-monotone), how it helps
c. Apriori algorithm: Candidate generation and pruning, calculating support using hash tree
d. Generating rules, confidence measure, rule lattice
e. Result post-processing (summarizing frequent itemsets, interestingness measures)
f. FP-growth: FP-trees, finding frequent itemsets

8. Clustering
 a. Unsupervised vs supervised learning
 b. Applications
 c. Partitional vs Hierarchical, Complete vs Partial, Exclusive vs Non-Exclusive
d. Types of clusters (well-separated, center-based, contiguous)
e. K-means clustering
 i. Choosing initial centroids (and problems with this)
 ii. How to measure distance/assign points to clusters
 iii. Evaluations
 iv. Empty clusters, outliers
f. Hierarchical clustering
 i. Agglomerative vs divisive
 ii. Algorithm
 iii. Defining proximity
g. Output in R, review provided examples

9. Class Imbalance
 a. Confusion Matrix Counts: True Positive, False Negative, False Positive, True Negative
 b. Confusion Matrix Rates (TPR, FNR, FPR, TNR)
c. Precision and recall
d. F₁ measure
e. ROC curve