Informed search strategies (Section 3.5-3.6)
Review: Tree search

• Initialize the **frontier** using the **starting state**
• While the frontier is not empty
 – Choose a frontier node to expand according to **search strategy** and take it off the frontier
 – If the node contains the **goal state**, return solution
 – Else **expand** the node and add its children to the frontier

• To handle repeated states:
 – Keep an **explored set**; add each node to the explored set every time you expand it
 – Every time you add a node to the frontier, check whether it already exists in the frontier with a higher path cost, and if yes, replace that node with the new one
Review: Uninformed search strategies

- Breadth-first search
- Depth-first search
- Iterative deepening search
- Uniform-cost search
Informed search strategies

• Idea: give the algorithm “hints” about the desirability of different states
 – Use an evaluation function to rank nodes and select the most promising one for expansion

• Greedy best-first search
• A* search
• RBFS (not on slides)
Heuristic function

- **Heuristic function** $h(n)$ estimates the cost of reaching goal from node n
- Example:

Start state

Goal state
Heuristic for the Romania problem
Greedy best-first search

• Expand the node that has the lowest value of the heuristic function $h(n)$
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- Complete?
 No – can get stuck in loops
Properties of greedy best-first search

• Complete?
 No – can get stuck in loops

• Optimal?
 No
Properties of greedy best-first search

- **Complete?**
 No – can get stuck in loops

- **Optimal?**
 No

- **Time?**
 Worst case: $O(b^m)$
 Can be much better with a good heuristic

- **Space?**
 Worst case: $O(b^m)$
How can we fix the greedy problem?

- How about keeping track of the distance already traveled in addition to the distance remaining?
A* search

- Idea: avoid expanding paths that are already expensive
- The **evaluation function** $f(n)$ is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

- $g(n)$: cost so far to reach n (path cost)
- $h(n)$: estimated cost from n to goal (heuristic)
A* search example
Another example

Uniform cost search vs. A* search

Admissible heuristics

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.

- A heuristic \(h(n) \) is admissible if for every node \(n \), \(h(n) \leq h^*(n) \), where \(h^*(n) \) is the true cost to reach the goal state from \(n \).

- Example: straight line distance never overestimates the actual road distance.

- Theorem: If \(h(n) \) is admissible, \(A^* \) is optimal.
Optimality of A*

- **Theorem:** If the heuristic is admissible, A* *without repeated state detection* is optimal.

- **Proof sketch:**
 - Let C^* be the evaluation function value (*actual* path cost) of the first goal node we select for expansion.
 - Then all the other nodes on the frontier have *estimated* path costs to the goal that are at least as big as C^*.
 - Because we are using an admissible heuristic, the *true* path costs to the goal for those nodes cannot be less than C^*.

![Diagram showing the start node, frontier, and goal nodes with estimated and actual path costs]

Estimated path costs to goal

Actual path costs to goal
A* gone wrong?

State space graph

- S to A: 1, h=2
- S to B: 1, h=2
- A to B: 1, h=4
- A to C: 1, h=1
- B to A: 1, h=1
- B to G: 2, h=1
- C to G: 3, h=0

Search tree

- S (0+2)
 - A (1+4)
 - C (2+1)
 - G (5+0)
 - B (1+1)
 - C (3+1)
 - G (6+0)

Source: Berkeley CS188x
Consistency of heuristics

- Consistency: Stronger than admissibility
- Definition:
 \[
 \text{cost}(A \text{ to } C) + h(C) \geq h(A)
 \]
 \[
 \text{cost}(A \text{ to } C) \geq h(A) - h(C)
 \]
 real cost \geq cost implied by heuristic
- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Source: Berkeley CS188x
Optimality of A*

- **Tree search** (i.e., search without repeated state detection):
 - A* is optimal if heuristic is *admissible* (and non-negative)
- **Graph search** (i.e., search with repeated state detection)
 - A* optimal if heuristic is *consistent*
- Consistency implies admissibility
 - In general, most natural admissible heuristics tend to be consistent, especially if they come from relaxed problems

Source: Berkeley CS188x
Optimality of A*

- A* is *optimally efficient* – no other tree-based algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution
 - A* expands all nodes for which \(f(n) \leq C* \). Any algorithm that does not risks missing the optimal solution
Properties of A*

• Complete?
 Yes – unless there are infinitely many nodes with $f(n) \leq C^*$

• Optimal?
 Yes

• Time?
 Number of nodes for which $f(n) \leq C^*$ (exponential)

• Space?
 Exponential
Designing heuristic functions

- Heuristics for the 8-puzzle

 \(h_1(n) \) = number of misplaced tiles

 \(h_2(n) \) = total Manhattan distance (number of squares from desired location of each tile)

\[
\begin{align*}
\text{Start State} & \quad \text{Goal State} \\
7 & \quad 1 \\
2 & \quad 2 \\
4 & \quad 3 \\
5 & \quad 4 \\
6 & \quad 5 \\
8 & \quad 6 \\
3 & \quad 7 \\
1 & \quad 8
\end{align*}
\]

\[h_1(\text{start}) = 8 \]

\[h_2(\text{start}) = 3+1+2+2+2+3+3+2 = 18 \]

- Are \(h_1 \) and \(h_2 \) admissible?
Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Heuristics from subproblems

• Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions
• Can precompute and save the exact solution cost for every possible subproblem instance – *pattern database*
Dominance

• If h_1 and h_2 are both admissible heuristics and $h_2(n) \geq h_1(n)$ for all n, (both admissible) then h_2 dominates h_1

• Which one is better for search?
 – A* search expands every node with $f(n) < C^*$ or $h(n) < C^* - g(n)$
 – Therefore, A* search with h_1 will expand more nodes
Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

 • $d=12$

 IDS $= 3,644,035$ nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes

 • $d=24$

 IDS $\approx 54,000,000,000$ nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
Combining heuristics

• Suppose we have a collection of admissible heuristics $h_1(n), h_2(n), ..., h_m(n)$, but none of them dominates the others

• How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$
Weighted A* search

- **Idea**: speed up search at the expense of optimality
- Take an admissible heuristic, “inflate” it by a multiple $\alpha > 1$, and then perform A* search as usual
- Fewer nodes tend to get expanded, but the resulting solution may be suboptimal (its cost will be at most α times the cost of the optimal solution)
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal

Compare: Exact A*
Additional pointers

• Interactive path finding demo
• Variants of A* for path finding on grids
All search strategies

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n) \leq C^*$</td>
<td></td>
</tr>
</tbody>
</table>
| Greedy | No | No | Worst case: $O(b^m)$
Best case: $O(bd)$ | |
| A* | Yes | Yes (if heuristic is admissible) | Number of nodes with $g(n)+h(n) \leq C^*$ | |
A note on the complexity of search

• We said that the worst-case complexity of search is exponential in the length of the solution path
 – But the length of the solution path can be exponential in the number of “objects” in the problem!
• Example: towers of Hanoi
Attribution

Slides developed by Svetlana Lazebnik based on content from Stuart Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach*, 3rd edition